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Abstract—This paper introduces a novel, well-founded, be-
tweenness measure, called the Bag-of-Paths (BoP) betweenness, as
well as its extension, the BoP group betweenness, to tackle semi-
supervised classification problems on weighted directed graphs.
The objective of semi-supervised classification is to assign a label
to unlabeled nodes using the whole topology of the graph and
the labeled nodes at our disposal. The BoP betweenness relies on
a bag-of-paths framework [1] assigning a Boltzmann distribution
on the set of all possible paths through the network such that long
(high-cost) paths have a low probability of being picked from
the bag, while short (low-cost) paths have a high probability
of being picked. Within that context, the BoP betweenness of
node j is defined as the sum of the a posteriori probabilities
that node j lies in-between two arbitrary nodes i, k, when
picking a path starting in i and ending in k. Intuitively, a node
typically receives a high betweenness if it has a large probability
of appearing on paths connecting two arbitrary nodes of the
network. This quantity can be computed in closed form by
inverting a n × n matrix where n is the number of nodes. For
the group betweenness, the paths are constrained to start and
end in nodes within the same class, therefore defining a within-
class group betweenness for each class. Unlabeled nodes are
then classified according to the class showing the highest group
betweenness. Experiments on various real-world data sets show
that BoP group betweenness performs competitively compared
to all the tested state-of-the-art methods [2]–[5]. The benefit of
the BoP betweenness is particularly noticeable when only a few
labeled nodes are available.

Index Terms—Graph and network analysis, network data,
graph mining, betweenness centrality, kernels on graphs, semi-
supervised classification.

I. INTRODUCTION

THE goal of a classification task is to automatically assign
data to predefined classes. Traditional pattern recognition,

machine learning or data mining classification methods require
large amounts of labeled training instances, which are often
difficult to obtain. The effort required to label the data can be
reduced using, for example, semi-supervised learning methods.
This name comes from the fact that the used data is a mixture
of data used for supervised and unsupervised learning (see,
e.g., [6] for an introduction). In short, semi-supervised learning
methods learn from both labeled and unlabeled instances. This
allows to reduce the amount of labeled instances needed to
achieve the same level of classification accuracy.

Graph-based semi-supervised classification has received a
growing focus in recent years. The problem can be described
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as follows: given an input graph with some nodes labeled,
the goal is to predict the missing node labels. This problem
has numerous applications such as classification of individuals
in social networks, categorization of linked documents (e.g.
patents or scientific papers), or protein function prediction,
to name a few. In this kind of application (as in many
others), unlabeled data are usually available in large quantities
and are easy to collect: friendship links can be recorded on
Facebook, text documents can be crawled from the internet
and DNA sequences of proteins are readily available from
gene databases. Given a relatively small labeled data set and a
large unlabeled data set, semi-supervised algorithms can infer
useful information from both sources.

This paper tackles this problem of semi-supervised clas-
sification within the bag-of-paths (BoP) framework. This
framework was originaly introduced in the context of distance
computation on graphs [1], capturing its global structure with,
as building block, network paths. This same framework was
previously used in [7] for defining a covariance kernel on a
graph. More precisely, we assume a weighted directed graph or
network G where a transition cost is associated to each arc.
We further consider a bag containing all the possible paths
(or walks) between pairs of nodes in G. Then, a Boltzmann
distribution, depending on a temperature parameter T , is
defined on the set of paths such that long (high-cost) paths
have a low probability of being picked from the bag, while
short (low-cost) paths have a high probability of being picked.
In this framework, the BoP probabilities, P(s = i, e = j), of
sampling a path starting in node i and ending in node j can
easily be computed in closed form by a simple n× n matrix
inversion, where n is the number of nodes.

Within this context, a betweenness measure quantifying to
which extent a node j is in-between two nodes i and k
is defined. More precisely, the BoP betweenness, betj =∑n

i=1

∑n
k=1 P(int = j|s = i, e = k), of a node j of

interest is defined quite naturally as the sum of the a posteriori
probabilities that node j (intermediate node) lies on a path
between the two nodes i and k sampled from the graph bag-
of-paths Boltzmann distribution. Intuitively, a node receives a
high betweenness if it has a large probability of appearing on
paths connecting two arbitrary nodes of the network.

For the group betweenness, the paths are constrained to
start and end in nodes of the same class, therefore defining a
group betweenness between classes, gbetj(Ci, Ck) = P(int =
j|s ∈ Ci, e ∈ Ck). Unlabeled nodes are then classified
according to the class showing the highest group betweenness
when starting and ending within the same class.

In summary, this work has three main contributions:
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• It develops both a betweenness measure and a group
betweenness measure from a well-founded theoretical
framework, the bag-of-paths framework. These two mea-
sures can be easily computed in closed form.

• This group betweenness measure provides a new algo-
rithm for graph-based semi-supervised classification.

• It assesses the accuracy of the proposed algorithm on thir-
teen standard data sets and compares it to state-of-the-art
techniques. The obtained performances are competitive
with the other graph-based semi-supervised techniques.

The main drawback of the proposed method is that it requires
a matrix inversion and therefore does not scale to very large
graphs. An approximate method relying on bounded walks (as
in [8]) will be investigated and is left for further work.

In this paper, the BoP classifier (or just BoP) will refer
to the semi-supervised classification algorithm based on the
bag-of-paths group betweenness developed in Section V.

The paper is organized as follows. Section II introduces
background and notations, mainly the bag-of-paths and the
bag-of-hitting-paths models. Then, related work in semi-
supervised classification is discussed in Section III. The bag-
of-paths betweenness and group betweenness centralities are
introduced in Section IV. This enables us to derive the BoP
classifier in Section V. Then experiments involving the BoP
classifier and classifiers discussed in the related work section
will be performed in Section VI. Results and discussions of
those experiments can be found in Section VI-C. Finally,
Section VII concludes this paper and opens a reflection for
further work.

II. BACKGROUND AND NOTATION

This section aims to introduce the theoretical background
and notation used in this paper. Furthermore, in order to
understand the bag-of-paths betweenness of Section IV, the
bag-of-paths and bag-of-hitting-paths frameworks [1] need to
be reviewed first. Thus, graph-based semi-supervised classi-
fication will be discussed in Subsection II-A, then the bag-
of-paths model will be introduced in Subsection II-B and,
finally, the bag-of-hitting-paths model will be briefly described
in Subsection II-C.

A. Graph-based semi-supervised classification

Consider a weighted directed graph or network, G, strongly
connected with a set of n nodes V (or vertices) and a set of
edges E (or arcs, links). The adjacency matrix of the graph,
containing non-negative affinities between nodes, is denoted
as A, with elements aij ≥ 0.

Moreover, to each edge between node i and j is associated
a non-negative number cij ≥ 0. This number represents the
immediate cost of transition from node i to j. If there is no
link between i and j, the cost is assumed to take a large value,
denoted by cij = ∞. The cost matrix C is an n× n matrix
containing the cij as elements. Costs are set independently
of the adjacency matrix – they are quantifying the cost of a
transition according to the problem at hand. Costs can, e.g., be
set in function of some properties, or features, of the nodes or
the arcs in order to bias the probability distribution of choosing

a path. In the case of a social network, we may, for instance,
want to bias the paths in function of the education level of
the persons, therefore favoring paths visiting highly educated
persons (see [1] for details). Now, if there is no reason to
introduce a cost, we simply set cij = 1 (paths are penalized
by their length) or cij = 1/aij (in this case, aij is viewed as
a conductance and cij as a resistance) – this last setting will
be used in the experimental section.

When tackling the semi-supervised classification problem,
we will also consider a set of classes, {Ck}mk=1, with the
number of classes equal to m. Each node is assumed to belong
to at most one class since the class label can also be unknown.
To represent the class memberships, a n × m-dimensional
indicator matrix, Y, is used. On each of its rows, it contains, as
entries, a 1 in column c when the corresponding node belongs
to class c, and 0 otherwise (m zeros on line i if the node i
is unlabeled). The c-th column of Y will be denoted yc and
contains the binary memberships ot the nodes to class c.

Moreover, a natural random walk on G is defined in the
standard way. In node i, the random walker chooses the next
edge to follow according to reference transition probabilities

pref
ij =

aij
n∑

j′=1

aij′

(1)

representing the probability of jumping from node i to node
j ∈ Succ(i), the set of successor nodes of i. The correspond-
ing transition probabilities matrix will be denoted as Pref. In
other words, the random walker chooses to follow an edge with
a probability proportional to the affinity (apart from the sum-
to-one normalization), therefore favoring edges associated to a
large affinity. The matrix Pref, containing the pref

ij , is stochastic
and is called the reference transition matrix.

B. The bag-of-paths framework

This framework was recently introduced in [1] (see also [7])
for computing distances on graphs. In order to make the paper
as self-contained as possible, we will briefly review the whole
framework in this section (see [1] for details) and then use it
in order to define a new betweenness measure, which is the
main contribution of the paper. The bag-of-paths (BoP) model
can be considered as a motif-based model [9], [10] using, as
building block, paths of the network. In the next subsection,
hitting paths will be used instead, as motifs.

A path ℘ (sometimes called a walk) is a sequence of
transitions to adjacent nodes on G (loops are allowed), initiated
from a starting node s, and stopping in an ending node e. If
we want to emphasise on those starting and ending nodes, we
will use ℘se instead of ℘.

The BoP framework is based on the probability of picking
a path i j starting at a node i and ending in a node j from
a virtual bag containing all possible paths in the network [1].
Let us define Pij as the set of all possible paths connecting
node i to node j, including loops. We further define the set
of all paths through the graph as P =

⋃n
i,j=1 Pij . The total

cost of a path ℘, c̃(℘), is defined as the sum of the individual
transition costs cij along ℘.
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The potentially infinite set of paths in the graph is enu-
merated and a probability distribution is assigned to the set
of individual paths P . This probability distribution on the set
P , represents the probability of picking a path ℘ ∈ P in the
bag, and is defined as the probability distribution P minimizing
the total expected cost, E [c̃(℘)], among all the distributions
having a fixed relative entropy J0 with respect to a reference
distribution, for instance a natural random walk on the graph
[1]. This choice naturally defines a probability distribution on
the set of paths such that long (high cost) paths occur with a
low probability while short (low cost) paths occur with a high
probability. In other words, we are seeking path probabilities,
P(℘), ℘ ∈ P , minimizing the total expected cost subject to a
constant relative entropy constraint:

P(℘)
minimize

∑
℘∈P

P(℘) c̃(℘)

subject to
∑

℘∈P P(℘) ln(P(℘)/π̃ref(℘)) = J0∑
℘∈P P(℘) = 1

(2)

where π̃ref represents the probability of following the path ℘
when walking according to the natural random walk reference
distribution. Thus π̃ref is the product of the transition proba-
bilities pref

ij along the path ℘. Here, J0 > 0 is provided a priori
by the user, according to the desired degree of randomness,
or exploration, he is willing to concede.

The result of the minimization [1] is a Boltzmann proba-
bility distribution:

P(℘) =
π̃ref(℘) exp [−θc̃(℘)]∑

℘′∈P
π̃ref(℘′) exp[−θc̃(℘′)]

, (3)

where θ = 1/T plays the role of an inverse temperature. As
expected, short paths ℘ (having a low c̃(℘)) are favored in
that they have a larger probability of being chosen. Moreover,
from Equation (3), we clearly observe that when θ → 0+,
the paths probabilities reduce to the probabilities generated
by the natural random walk on the graph. In this case,
J0 → 0 and paths are chosen according to their likelihood
in a natural random walk. On the other hand, when θ is large,
the probability distribution defined by Equation (3) is biased
towards short paths (paths shortest ones are more likely).
Notice that, in the sequel, it will be assumed that the user
provides the value of the parameter θ instead of J0, with θ > 0.

The bag-of-paths probability [1] is now defined as the
quantity P(s = i, e = j) on the set of (starting, ending) nodes
of the paths. It corresponds to the probability of drawing a
path starting in node i and ending in node j from the virtual
bag-of-paths:

P(s = i, e = j) =

∑
℘∈Pij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈P

π̃ref(℘′) exp[−θc̃(℘′)]
, (4)

where Pij is the set of paths connecting the starting node i to
the ending node j.

Let us derive the analytical closed form of this expression.
To this end, we start from the cost matrix, C, from which we
build a new matrix, W, as

W = Pref ◦ exp[−θC], (5)

where Pref is the reference transition matrix containing the
pref
ij , the exponential function is taken elementwise and ◦ is the

elementwise multiplication (Hadamard product). The entries of
W are therefore wij = pref

ij exp[−θcij ].
It is shown in [1] that the numerator of Equation (4) is∑
℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] =
∞∑
t=0

[
Wt
]
ij
=

[ ∞∑
t=0

Wt

]
ij

,

(6)
where, by convention, zero-length paths are taken into account
and are associated to a zero cost. Computing the series of
powers of W provides

∞∑
t=0

Wt = (I−W)
−1

= Z, (7)

which converges if the spectral radius of W is less than 1,
ρ(W) < 1. Since the matrix W only contains non-negative
elements, a sufficient condition for ρ(W) < 1 is that the
matrix is sub-stochastic, which is always achieved for θ > 0
and at least one cij > 0 when aij > 0 (see Equation
(5)), which is assumed for now. The matrix Z is called the
fundamental matrix and zij is the element i, j of Z.

Hence, following Equations (6-7), we finally obtain, for the
numerator of Equation (4),∑

℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] = zij . (8)

On the other hand, for the denominator of Equation (4), we
have

n∑
i,j=1

∑
℘∈Pij

π̃ref(℘) exp [−θc̃(℘)] =
n∑

i,j=1

zij , Z, (9)

where Z is called the partition function.
Therefore, from Equation (4), the probability of picking a

path starting in i end ending in j in our bag of paths model
is

P(s = i, e = j) =
zij
Z
, with Z = (I−W)

−1
. (10)

Notice that P(s = i, e = j) is not symmetric1. We now turn
to a variant of the bag-of-paths, the bag-of-hitting-paths.

C. The bag-of-hitting-paths framework

The idea behind the bag-of-hitting-paths model is the same
as the bag-of-paths model but the set of paths is now restricted
to paths in which the ending node does not appear more than
once. In other words, no intermediate node on the path is
allowed to be the ending node j (node j is made absorbing)
and the motifs are now the hitting paths. Hitting paths will play

1For a symmetric variant in the case of undirected graphs [1], we can
consider the probability of picking either i  j or j  i, which is P(s =
i, e = j) + P(s = j, e = i).
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an important role in the derivation of the BoP betweenness.
Each non-hitting path ℘ij ∈ Pij can be split uniquely into two
sub-paths, before hitting node j for the first time, ℘h

ij ∈ Ph
ij

(the set of all hitting paths), and after hitting node j, ℘jj ∈ Pjj

(see [1] for details). Notice the usage of the superscript h to
refer to hitting paths. The composition of the two sub-paths
is a valid path, where ℘h

ij ◦ ℘jj ∈ Pij is the concatenation of
the two paths.

In the case of a bag containing hitting paths, the probability
of picking a path i j is defined in a similar way as for non-
hitting paths (Equation (4)),

Ph(s = i, e = j) =

∑
℘∈Ph

ij

π̃ref(℘) exp[−θc̃(℘)]

∑
℘′∈Ph

π̃ref(℘′) exp[−θc̃(℘′)]
(11)

and is called the bag-of-hitting-paths probability distribu-
tion.

Now, since c̃(℘ij) = c̃(℘h
ij) + c̃(℘jj) and π̃ref(℘ij) =

π̃ref(℘h
ij)π̃

ref(℘jj) for any ℘ij = ℘h
ij ◦ ℘jj , we easily obtain

zij =
∑

℘ij∈Pij

π̃ref(℘ij) exp[−θc̃(℘ij)]

=
∑

℘h
ij∈Ph

ij

∑
℘jj∈Pjj

π̃ref(℘h
ij) exp[−θc̃(℘h

ij)]

× π̃ref(℘jj) exp[−θc̃(℘jj)]

= zh
ijzjj . (12)

From which we deduce zh
ij =∑

℘∈Ph
ij
π̃ref(℘) exp[−θc̃(℘)] = zij/zjj . Now, by analogy

with Equation (10), but for hitting paths (Equation (11)),

Ph(s = i, e = j) =
zh
ij

n∑
i′=1

n∑
j′=1

zh
i′j′

=
zh
ij

Zh
(13)

and the partition function for the bag-of-hitting-paths is there-
fore

Zh =

n∑
i,j=1

zh
ij =

n∑
i,j=1

zij
zjj

. (14)

Finally, let us just mention that another derivation is available
in [1], where it is further shown that zh

ij can be interpreted as
either

• The expected reward endorsed by an agent (the reward
along a path ℘ being defined as exp[−θc̃(℘)]) when
traveling from i to j along all possible paths ℘ ∈ Ph

ij

with probability π̃ref(℘).
• The expected number of passages through node j for an

evaporating, or killed, random walker starting in node
i and walking according to the sub-stochastic transition
probabilities pref

ij exp[−θcij ].
Before deriving the BoP betweenness measure, let us con-

sider some related work.

III. RELATED WORK

Graph-based semi-supervised classification has been the
subject of intensive research in recent years and a wide range
of approaches has been developed in order to tackle the
problem [6], [11], [12]: Random-walk-based methods [13],
[14], spectral methods [15], [16], regularization frameworks
[4], [17]–[19], transductive and spectral SVM [20], to name a
few. We will compare our method (the BoP) to some of those
techniques, namely,

1) A simple alignment with the regularized laplacian ker-
nel (RL) based on a sum of similarities, Kyc, where
K = (I + λL)−1, L = D − A is the laplacian matrix,
I is the identity matrix, D is the generalized outdegree
matrix, and A is the adjacency matrix of G [18], [21].
The similarity is computed for each class c in turn. Then,
each node is assigned to the class showing the largest
sum of similarities. The (scalar) parameter λ > 0 is the
regularization parameter [8], [22].

2) A simple alignment with the regularized normalized
laplacian kernel (RNL) based on a sum of similarities,
Kyc, where K = (I + λL̃)−1, and L̃ = D−1/2LD−1/2
is the normalized laplacian matrix [4], [23]. The as-
signment to the classes is the same as for the previous
method. The regularized normalized laplacian approach
seems less sensitive to the priors of the different classes
than the un-normalized regularized laplacian approach
(RL) [23].

3) A simple alignment with the regularized commute time
kernel (RCT) based on a sum of similarities, Kyc, with
K = (D−αA)−1 [4], [22]. The assignment to the classes
is the same as for previous methods. Element i, j of this
kernel can be interpreted as the discounted cumulated
probability of visiting node j when starting from node
i. The (scalar) parameter α ∈ ]0, 1] corresponds to an
evaporating or killed random walk where the random
walker has a (1−α) probability of disappearing at each
step. This method provided the best results in a re-
cent comparative study on semi-supervised classification
[22].

4) The harmonic function (HF) approach [5], [11], is
closely related to the regularization framework of RL
and RNL. Furthermore, it is equivalent and provides
the same results as the label propagation algorithm [12]
and the wvRN (or pRN) classifier used by the Netkit
software as a baseline [24], but Netkit is a more general-
purpose toolbox able to tackle more complex situations
[25]. As those three algorithms give the same results, we
only report HF which appeared first in the litterature and
is fastest. It is based on a structural contiguity measure
that smoothes the predicted values and leads to a model
having interesting interpretations in terms of electrical
potential and absorbing probabilities in a Markov chain.

5) The random walk with restart (RWWR) classifier [3],
[26] relies on random walks performed on the weighted
graph seen as a Markov chain. More precisely, a group
betweenness measure is derived for each class, based on
the stationary distribution of a random walk restarting
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from the labeled nodes belonging to a class of inter-
est. Each unlabeled node is then assigned to the class
showing maximal betweenness. In this version [22], the
random walker has a probability (1−α) to be teleported
– with a uniform probability – to a node belonging to
the class of interest c.

6) The discriminative random walks approach (D-walk or
DW1; see [2]) also relies on random walks performed
on the weighted graph. As for the RWWR, a group
betweenness measure, based on passage times during
random walks, is derived for each class. More precisely,
a D-walk is a random walk starting in a labeled node and
ending when any node having the same label (possibly
the starting node itself) is reached for the first time.
During this random walk, the number of visits to any
unlabeled node is recorded and corresponds to a group
betweenness measure. As for the previous method, each
unlabeled node is then assigned to the class showing
maximal betweenness.

7) A modified version of the D-walk (or DW2). The only
difference is that all elements of the transition matrix
Pref (since the random walks is seen as a Markov chain)
are multiplied by α ∈ ]0, 1] so that α can be seen as
a probability of continuing the random walk at each
time step (and so (1 − α) ∈ [0, 1[ is the probability
of stopping the random walk at each step. This defines
a killed random walk since αPref is now sub-stochastic.

All these methods will be compared to the bag-of-paths
(BoP) developed in the next sections. Notice that the random
walker of the random-walk-based methods usually follows too
long – and thus irrelevant – paths into account: popular entries
are therefore intrinsically favored [27], [28]. The bag-of-paths
approach tackles this issue by putting a negative exponential
term in (5) and part of its success can be imputed to this fact.

Some authors also considered bounded (or truncated) walks
[8], [29], [30] and obtained promising results on large graphs.
This approach could also be considered in our framework in
order to tackle large networks; this will be investigated in
further work.

Tong et al. suggested a method avoiding to take the inverse
of an n × n matrix for computing the random walk with
restart measure [26]. They reduce the computing time by
partitioning the input graph into smaller communities. Then, a
sparse approximate of the random walk with restart is obtained
by applying a low rank approximation. This approach suffers
from the fact that it adds a hyperparameter k (the number
of communities) that depends on the network and is still
untractable for large graphs with millions of nodes. On the
other hand, the computing time is reduced by this same factor
k. This is another track to investigate in further work.

Herbster et al. [31] proposed a technique for fast label pre-
diction on graphs through the approximation of the graph with
either a minimum spanning tree or a shortest path tree. Once
the tree has been extracted, the pseudo inverse of the laplacian
matrix can be computed efficiently. The fast computation of
the pseudo inverse enables to address prediction problems
on large graphs. Finally, Tang and Liu have investigated
relational learning via latent social dimensions [32]–[34]. They

proposed to extract latent social dimensions based on network
information (such as Facebook, Twitter,...) first, then they used
these as features for discriminative learning (via an SVM, for
example [32]). Their approach tackles very large networks and
provides promising results, especially when only a few labeled
data are available.

A lot of research has also been done on collective classi-
fication of nodes in networks (see [35] for an introduction).
Collective classification also uses the graph topology and a
proportion of labeled nodes to classify unlabeled nodes using
the same assumption as our proposed technique (i.e, local
consistency or homophily).

We also experimented a group betweenness using Free-
man’s, i.e. the shortest path, betweenness [36] and a modified
version of Newman’s betweenness [37]. For this latter one, the
transition probabilities were set to Pref, and the ending node
of the walk was forced to be absorbing. Then, the expected
number of visits to each node was recorded and cumulated for
each input-output path. However, our BoP group betweenness
outperformed these two other class betweenness measures and
consequently, results are not reported in this paper.

IV. THE BAG-OF-PATHS BETWEENNESSES

In order to define the BoP classifier, we need to introduce
the BoP group betweenness centrality. This concept is itself
an extension of the BoP betweenness centrality, which will
be developed in the next subsection. The BoP betweenness is
related to well-known betweenness measures in some sense: if
θ →∞ the BoP betweenness tends to be correlated with Free-
man’s betweenness [36] (only shortest-paths are considered),
while if θ → 0+, the BoP betweenness tends to be correlated
with Newman’s betweenness [37] (based on a natural random
walk). This section starts with the presentation of the BoP
betweenness centrality measure in Subsection IV-A. Then, its
extension, the BoP group betweenness centrality, is described
in Subsection IV-B.

A. The bag-of-paths betweenness centrality

The BoP betweenness will measure to which extent a node
j is likely to lie in-between other pairs of nodes (i, k), and
therefore is an important intermediary between nodes. In short,
the bag-of-paths betweenness measure is defined as

betj =
n∑

i=1

n∑
k=1

P(int = j|s = i, e = k; i 6= j 6= k 6= i) (15)

which corresponds to the a posteriori probability of finding
intermediate node j on a path i  j drawn from the bag of
paths, cumulated over all source-destination pairs (i, k).

For computing this quantity from the bag-of-paths frame-
work, we first have to calculate the probability P(s = i, int =
j, e = k; i 6= j 6= k 6= i) – or Pijk in short – that such paths
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visit an intermediate node int = j with i 6= j 6= k 6= i.
Indeed, by using Equations (3) and (4),

Pijk =
∑

℘∈Pik

δ(j ∈ ℘)P(℘)

=

∑
℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp [−θc̃(℘)]∑
℘′∈P

π̃ref(℘′) exp [−θc̃(℘′)]

=
1

Z
∑

℘∈Pik

δ(j ∈ ℘) π̃ref(℘) exp [−θc̃(℘)] , (16)

where δ(j ∈ ℘) = 1 when node j is visited on path ℘, and 0
otherwise.
We will now use the fact that each path ℘ik between i and k
passing through j can be decomposed uniquely into a hitting
sub-path ℘ij from i to j and a regular sub-path ℘jk from j to k
(see Subsection II-C). The sub-path ℘ij is found by following
path ℘ik until reaching j for the first time. Therefore, for
i 6= j 6= k 6= i,

Pijk =
1

Z
∑

℘h
ij∈Ph

ij

∑
℘jk∈Pjk

π̃ref(℘h
ij)π̃

ref(℘jk)

× exp
[
−θc̃(℘h

ij)
]
exp [−θc̃(℘jk)] . (17)

This equation can be reordered to get, for i 6= j 6= k 6= i :

Pijk =
1

Z

 ∑
℘h

ij∈Ph
ij

π̃ref(℘h
ij) exp

[
−θc̃(℘h

ij)
]

×

 ∑
℘jk∈Pjk

π̃ref(℘jk) exp [−θc̃(℘jk)]

 . (18)

Then, after multiplying by Zh/Zh, we obtain

Pijk =
1

Z
zh
ijzjk = Zh

zh
ij

Zh

zjk
Z

= Zh Ph(s = i, e = j)P(s = j, e = k), (19)

with i 6= j 6= k 6= i and where we used Equations (12) and
(13).

Finally, recalling Equations (10), (13),

Pijk =

(
zij
zjj

)
(zjk)

Z
=

1

Z
zijzjk
zjj

, with i 6= j 6= k 6= i.

=
1

Z
zijzjk
zjj

δ(i 6= j 6= k 6= i) (20)

Now, using the Bayes’s rule, the a posteriori probabilitiy of
finding intermediate node j on a path starting in i and ending
in k is

P(int = j|s = i, e = k; i 6= j 6= k 6= i)

=
P(s = i, int = j, e = k; i 6= j 6= k 6= i)

n∑
j′=1

P(s = i, int = j′, e = k; i 6= j′ 6= k 6= i)

.

Using Equation (20), if we assume that node k can be
reached from node i, this leads to

P(int = j|s = i, e = k; i 6= j 6= k 6= i)

=

(
zijzjk
zjj

)
n∑

j′=1
j′ /∈{i,k}

(
zij′zj′k
zj′j′

)δ(i 6= j 6= k 6= i). (21)

Based on this a posteriori probability distribution, the bag-
of-paths betweenness of node j is defined as the sum of the
a posteriori probabilities of visiting j for all possible starting-
ending pairs (i, k):

betj =
n∑

i=1

n∑
k=1

P(int = j|s = i, e = k; i 6= j 6= k 6= i) (22)

=
1

zjj

n∑
i=1
i 6=j

n∑
k=1

k/∈{i,j}

zijzjk
n∑

j′=1
j′ /∈{i,k}

(
zij′zj′k
zj′j′

) , (23)

which allows to compute the betweenness from the fundamen-
tal matrix Z (Equation (7)).

Let us now derive the matrix formula providing the be-
tweenness vector bet, containing the betweennesses for each
node. First of all, the normalization factor appearing in the
denominator of Equation (23), denoted here by nik, is com-
puted,

nik =

n∑
j′=1

(1− δij′)(1− δj′k) (zij′zj′k)/zj′j′ , (24)

which can be re-written as

nik =

n∑
j′=1

{(1− δij′)zij′}{1/zj′j′}{(1− δj′k)zj′k}. (25)

Therefore, the matrix containing the normalization factors
nik is

N = (Z−Diag(Z)) (Diag(Z))−1(Z−Diag(Z)), (26)

where for a given matrix M, diag(M) is a column vector
containing the diagonal of M and Diag(M) is a diagonal
matrix containing the diagonal of M.

Moreover, the inner term appearing in Equation (23) can be
rewritten as

n∑
i=1

n∑
k=1

δ(i 6= j 6= k 6= i)zij(1/nik)zjk

=

n∑
i=1

n∑
k=1

{(1− δji)zt
ji}{(1− δik)(1/nik)}{(1− δkj)zt

kj},

(27)

where zt
ij is the element i, j of matrix ZT (transpose of Z).

In matrix form, bet (see Equation (21)) is therefore equal to

bet =(Diag(Z))−1diag
[
(ZT −Diag(Z))

× (N÷ −Diag(N÷))(ZT −Diag(Z))
]
, (28)

with matrix N÷ containing elements n÷ik = 1/nik (element-
wise reciprocal).
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B. The bag-of-paths group betweenness centrality

Let us now generalize the bag-of-paths betweenness to a
group betweenness measure. Quite naturally, the bag-of-paths
group betweenness of node j will be defined as

gbetj(Ci, Ck) = P(int = j|s ∈ Ci, e ∈ Ck; s 6= int 6= e 6= s)
(29)

and can be interpreted as the extent to which the node j lies
in-between the two sets of nodes Ci and Ck. It is assumed that
the sets {Ci}mi=1 are disjoint. Using Bayes’ law provides

P(int = j|s ∈ Ci, e ∈ Ck; s 6= int 6= e 6= s)

=
P(s ∈ Ci, int = j, e ∈ Ck; s 6= int 6= e 6= s)

P(s ∈ Ci, e ∈ Ck; s 6= int 6= e 6= s)

=

∑
i′∈Ci

∑
k′∈Ck

P(s = i′, int = j, e = k′; s 6= int 6= e 6= s)

n∑
j′=1

∑
i′∈Ci

∑
k′∈Ck

P(s = i′, int = j′, e = k′; s 6= int 6= e 6= s)

.

(30)

Substituting (20) for the joint probabilities in Equation (30)
allows to compute the group betweenness measure in terms of
the elements of the fundamental matrix Z:

gbetj(Ci, Ck)

=

∑
i′∈Ci

∑
k′∈Ck

δ(i′ 6= j 6= k′ 6= s)
zi′jzjk′

zjj

n∑
j′=1

∑
i′∈Ci

∑
k′∈Ck

δ(i′ 6= j′ 6= k′ 6= s)
zi′j′zj′k′

zj′j′

, (31)

where the denominator is simply a normalization factor ensur-
ing that the probability distribution sums to one. It is therefore
sufficient to compute the numerator only and then normalize
the resulting quantity.

Let us put this expression in matrix form. As before, we
denote element i, j of matrix ZT as zt

ij . It is also assumed
that node i′ and k′ belong to different groups, Ci 6= Ck, so
that i and k are necessarily different (classes are disjoint).
The numerator in Equation (31) is

num(gbetj(Ci, Ck))

=
1

zjj

∑
i′∈Ci

∑
k′∈Ck

(1− δji′)(1− δjk′) zi′jzjk′

=
1

zjj

(∑
i′∈Ci

(1− δji′)zt
ji′

)( ∑
k′∈Ck

(1− δjk′)zjk′

)
.

(32)

If yci is a binary indicator indicating if node i belongs to
the class c (as described in Section II-A), the numerator can
be rewritten as

num(gbetj(Ci, Ck))

=
1

zjj

(
n∑

i′=1

(1− δji′)zt
ji′y

i
i′

)(
n∑

k′=1

(1− δjk′)zjk′ykk′

)
.

(33)

Consequently, in matrix form, the group betweenness vector
reads

gbet(Ci, Ck)← (Diag(Z))−1
(
(ZT

0y
i) ◦ (Z0y

k)
)

with Z0 = Z−Diag(Z),

gbet(Ci, Ck)←
gbet(Ci, Ck)
‖gbet(Ci, Ck)‖1

(normalization)

(34)
where we assume i 6= k. In this equation, the vector
gbet(Ci, Ck) must be normalized by dividing it by its L1

norm. Notice that Z0 = Z − Diag(Z) is simply the fun-
damental matrix whose diagonal is set to zero.

V. SEMI-SUPERVISED CLASSIFICATION THROUGH THE
BAG-OF-PATHS GROUP BETWEENNESS

In this section, the bag-of-paths model, and more precisely
the bag-of-paths group betweenness measure, will be used for
classification purposes. Notice, however, that in the derivation
of the group betweenness measure (see Equation (34)), it was
assumed that the starting and ending classes are different (Ci 6=
Ck). We will now recompute this quantity when starting and
ending in the same class c, i.e. calculating gbetj(Cc, Cc), which
provides a within-class betweenness. Indeed, this quantity
measures the extent to which nodes of G are in-between –
and therefore in the neighborhood of – the nodes of class c.

A within-class betweenness is thus computed for each class
c and each node will define assigned to the class showing the
highest betweenness. This will be our simple classification rule
based on the within-class betweenness. The main hypothesis
underlying this classification technique is that a node is likely
to belong to the same class as its “neighboring nodes”. This
is usually called the local consistency assumption (also called
smoothness, homophily or cluster assumption [5], [12], [38]).

The same reasoning as for deriving Equation (34) is applied
in order to compute the numerator of (31) in this new case.
We start with Equation (31), considering now the same starting
and ending class c but multiplying the term inside the double
sum by (1− δi′k′). This new term will ensure that the starting
node is different from the ending node (this was always the
case with different starting and ending classes, but now this
must be forced). From Equation (32), this can be rewritten as

num(gbetj(Cc, Cc)) =
1

zjj

∑
i′,k′∈Cc

(1− δji′)(1− δi′k′)

× (1− δjk′) zi′jzjk′ . (35)

num(gbetj(Cc, Cc)) is thus the same as num(gbetj(Ci, Ck))
with Ci = Cc of Equation (32) and Ck = Cc, plus an extra
term:

num(gbetj(Cc, Cc)) =
1

zjj

∑
i′∈Cc

∑
k′∈Cc

(1− δji′)(1− δjk′) zi′jzjk′

− 1

zjj

∑
i′∈Cc

∑
k′∈Cc

(1− δji′)δi′k′(1− δjk′) zi′jzjk′ . (36)
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TABLE I
CLASS DISTRIBUTION OF THE NINE Newsgroups DATA SETS. NG 1-3 CONTAIN TWO CLASSES, NG 4-6 CONTAIN THREE CLASSES AND NG 7-9 CONTAIN

FIVE CLASSES.

Class NG1 NG2 NG3 NG4 NG5 NG6 NG7 NG8 NG9

1 200 198 200 200 200 197 200 200 200
2 200 200 199 200 198 200 200 200 200
3 200 200 198 200 198 197
4 200 200 200
5 198 200 200

Total 400 398 399 600 598 595 998 998 997

It is easy to show that with this additional term, the matrix
equation for num(gbet(Cc, Cc)) (Equation (34)) becomes

num(gbet(Cc, Cc))
= (Diag(Z))−1

[
(ZT

0y
c) ◦ (Z0y

c)− (ZT
0 ◦ Z0)y

c
]
. (37)

Once again, this is the same result as in Equation (34) with one
more term that ensure that the starting node is different from
the ending node. After having computed this equation, the
numerator must be normalized in order to obtain gbet(Cc, Cc)
(as for Equation (34)).

Finally, if we want to classify a node, gbet(Cc, Cc) is
computed for each class c in turn and then, for each node,
the class label showing the maximal betweenness is chosen,

ˆ̀= argmax
c∈L

(gbet(Cc, Cc)) , with
Dz = Diag(Z);Z0 = Z−Dz (set diagonal to 0)
gbet(Cc, Cc)← D−1z

[
(ZT

0y
c) ◦ (Z0y

c)− (ZT
0 ◦ Z0)y

c
]

gbet(Cc, Cc)←
gbet(Cc, Cc)
‖gbet(Cc, Cc)‖1

(normalization)

(38)
where L is the set of class labels. The pseudo-code for the
BoP classifier can be found in Algorithm 1. Of course, once
computed, the group betweenness is only used to classify the
unlabeled nodes.

VI. EXPERIMENTAL COMPARISONS

In this section, the bag-of-paths group betweenness ap-
proach for semi-supervised classification (referred to as the
BoP classifier for simplicity) will be compared to other semi-
supervised classification techniques on multiple data sets.
The different classifiers to which the BoP classifier will be
compared were already introduced in Section III and are
recalled in Table IV.

TABLE II
CLASS DISTRIBUTION OF THE IMDb-proco DATA SET.

Class IMDb

High-revenue 572
Low-revenue 597

Total 1169

The goal of the experiments of this section is to classify
unlabeled nodes in partially labeled graphs and to compare
the different methods in terms of classification accuracy. This

Algorithm 1 Classification through the bag-of-paths group
betweenness algorithm.
Input:

– A weighted directed graph G containing n nodes, represented
by its n× n adjacency matrix A, containing affinities.
– The n× n transition cost matrix C associated to G.
– m binary indicator vectors yc containing as entries 1 for nodes
belonging to the class Cc, and 0 otherwise. Classes are mutually
exclusive.
– The inverse temperature parameter θ.

Output:
– The n × 1 vector ˆ̀ containing the predicted class labels of
each node.

1: D← Diag(Ae) {the row-normalization matrix}
2: Pref ← D−1A {the reference transition probabilities matrix}
3: W← Pref ◦ exp [−θC] {elementwise exponential and multipli-

cation ◦}
4: Z← (I−W)−1 {the fundamental matrix}
5: Z0 ← Z−Diag(Z) {set diagonal to zero}
6: Dz ← Diag(Z)
7: for c = 1 to m do
8: ŷ∗c ← D−1

z
[
(ZT

0y
c) ◦ (Z0yc) − (ZT

0 ◦ Z0)y
c
]
{compute

the group betweenness for class c; ◦ is the elementwise
multiplication (Hadamard product)}

9: ŷ∗c ←
ŷ∗c
‖ŷ∗c‖1

{normalize the betweenness scores}
10: end for
11: ˆ̀← argmax

c∈L
(ŷ∗c ) {each node is assigned to the class showing

the largest class betweenness}
12: return ˆ̀

TABLE III
CLASS DISTRIBUTION OF THE FOUR WebKB cocite DATA SETS.

Class Cornell Texas Washington Wisconsin

Course 54 51 170 83
Department 25 36 20 37
Faculty 62 50 44 37
Project 54 28 39 25
Staff 6 6 10 11
Student 145 163 151 155

Total 346 334 434 348
Majority
class (%) 41.9 48.8 39.2 44.5

comparison is performed on medium-size networks only since
kernel approaches are difficult to compute on large networks.
The computational tractability of the methods used in this
experimental section will also be analyzed.

This section is organized as follows. First, the data sets
used for the semi-supervised classification will be described
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TABLE IV
THE EIGHT CLASSIFIERS, THE VALUE RANGE TESTED FOR TUNING THEIR PARAMETERS AND THE MOST SELECTED VALUES. MODE1 IS THE MOST

SELECTED VALUE, MODE2 IS THE SECOND MOST SELECTED VALUE AND MODE3 IS THE THIRD MOST SELECTED VALUE. NOTICE THAT DW2 WITH
α = 1.0 IS THE SAME AS DW1.

Classifier name Acronym Parameter Tested values Mode1 Mode2 Mode3
Regularized laplacian kernel RL λ > 0 10−6, 10−5, ..., 106 10−9(12.3%) 10−1(11.7%) 10−2(11.5%)

Regularized normalised laplacian kernel RNL λ > 0 10−6, 10−5, ..., 106 10−1(42.1%) 10−2(13.9%) 10−3(09.3%)
Label Propagation LP none / / / /

Regularized commute-time kernel RCT α ∈ ]0, 1] 0.1, 0.2, ..., 1 0.9(28.0%) 0.8(16.2%) 0.7(12.2%)
Harmonic function HF none / / / /

Random walk with restart RWWR α ∈ ]0, 1] 0.1, 0.2, ..., 1 0.9(45.8%) 0.8(16.8%) 0.7(10.1%)
Discriminative random walks DW1 none / / / /

Killed discriminative random walks DW2 α ∈ ]0, 1] 0.1, 0.2, ..., 1 1.0(19.5%) 0.1(11.8%) 0.9(11.2%)
BoP classifier BoP θ > 0 10−6, 10−5, ..., 102 10−4(28.3%) 10−3(25.9%) 10−2(12.3%)
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Fig. 1. Classification accuracies in percents, averaged over 20 runs, obtained
on partially labeled graphs. Results are reported for the eight methods (RL,
RNL, RCT, HF, RWWR, DW1, DW2, BoP) and for five labeling rates
(10%, 30%, 50%, 70%, 90%). This graphs shows the results obtained on
the NewsGroups (NG2) data set.

in Subsection VI-A. Second, the experimental methodology
is detailed in Subsection VI-B. Third, the results will be
discussed in Subsection VI-C. Fourth, the computation time
will be investigated in Subsection VI-D. Finally, extreme cases
are studied in Subsection VI-E.

A. Datasets

The different classifiers are compared on 14 data sets that
have been used previously for semi-supervised classification:
nine Newsgroups data sets [39], the four universities WebKB
cocite data sets [24], [17] and the IMDb prodco data set [24]2.

Newsgroups: The Newsgroups data set is composed of about
20,000 unstructured documents, taken from 20 discussion
groups (newsgroups) of the Usenet diffusion list. 20 Classes
(or topics) were originally present in the data set. For our ex-
periments, nine subsets related to different topics are extracted
from the original data set, resulting in a total of nine different

2The different data sets used for these comparisons are described
in Subsection VI-A. Implementations and datasets are available at
http://www.isys.ucl.ac.be/staff/lebichot/research.htm.

data sets. The data sets were built by sampling about 200
documents at random in each topic (three samples of two, three
and five classes, thus nine samples in total). The repartition
is listed in Table I. The extraction process and the procedure
used for building the graph are detailed in [40].

WebKB cocite: These data sets consist of sets of web pages
gathered from four computer science departments (four data
sets, one for each university), with each page manually labeled
into one of six categories: course, department, faculty, project,
staff, and student [24]. The pages are linked by co-citation (if
x links to z and y links to z, then x and y are co-citing z),
resulting in an undirected graph. The composition of the data
sets is shown in Table III.

IMDb-prodco: The collaborative Internet Movie Database
(IMDb, [24]) has several applications such as making movie
recommendations or movie category classification. The clas-
sification problem focuses on the prediction of whether the
movie is a box-office hit or not. It contains a graph of movies
linked together whenever they share the same production
company and weight of an edge in the graph is the number of
production companies that two movies have in common. The
IMDb-proco class distribution is shown in Table II.

B. Experimental methodology

The classification accuracy will be reported for several
labeling rates (10%, 30%, 50%, 70%, 90%), i.e. proportions of
nodes for which the label is known. The labels of remaining
nodes are deleted during the modeling phase and are used as
test data during the assessment phase. For each considered
labeling rate, 20 random node label deletions were performed
(20 runs) and performances are averaged on these 20 runs.
For each unlabeled node, the various classifiers predict the
most suitable category. For each run, a 10-fold nested cross-
validation is performed for tuning the parameters of the mod-
els. The external folds are obtained by 10 successive rotations
of the nodes and the performance of one specific run is the
average over these 10 folds. Moreover, for each fold of the
external cross-validation, a 10-fold internal cross-validation is
performed on the remaining labeled nodes in order to tune
the hyperparameters of the classifiers (i.e. parameters α, λ
and θ (see Table IV) – methods HF and DW1 do not have
any hyperparameter). Thus, for each method and each labeling
rate, the mean classification accuracy averaged on the 20 runs
will be reported.
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C. Results & discussion

Comparative results for each method on the fourteen data
sets are reported as follows: the results on the nine News-
Groups data sets, on the four WebKB Cocite data sets and on
the IMBd-prodco data set are shown in Table V. The results of
the second NewsGroups data set are also reported as a plot on
Fig. 1 to visualize the typical relation between classification
accuracy and labeling rate.

Statistical significance tests for each labeling rate are
detailed in Table VI. One-sided t-tests were performed to
determine whether or not the performance of a method is
significantly superior (p-value less than 0.05 on the 20 runs)
to another. Table VI can be read as follows. At the bottom
of each table, the Win/Tie/Lose frequency summarizes how
many times the BoP classifier was significantly better (Win),
equivalent (Tie), or significantly worse (Lose) than each other
method.

The most selected values of the parameters for each method
are reported in Table IV. With each methods, all the tested
values were selected at least once. RNL, RCT, RWWR and
BoP selected a short range of parameters, which is of course
desirable. Some methods, such as RL and DW2 selected a very
wide range of parameters, and the different most represented
values are not grouped.

Moreover, for each labeling rate, the different classifiers
have been ordered according to a Borda score ranking. For
each data set, each method is granted with a certain number
of points, or rating. This number of points is equal to eight
if the classifier is the best classifier (i.e., has the best mean
classification accuracy on this data set), seven if the classifier
is the second best and so on, so that the worst classifier is
granted with only one point. The ratings are then summed
across all the considered data sets and the classifiers are sorted
by descending total rating. The final ranking, together with the
total ratings, are reported in Table VII.

We observe that the BoP classifier always achieved compet-
itive results since it ranges among the top methods on all data
sets. The BoP classifier actually tends to be the best algorithm
for all labeling rates except for the 90% labeling rate, where
it comes second as observed from Table VII and from Table
VI. The RWWR method is often second. The RCT kernel also
achieves good performance and is the best of the kernel-based
classifiers (as suggested in [22]). It is also the best algorithm
when the labeling rate is very high (90%).

Notice that RWWR, RCT and DW2 largely outperform
the other algorithms (besides BoP). However, it is difficult
to figure out which of those three methods is the best, after
BoP. It can be noticed that the DW2 version of the D-walk
is more competitive when the labeling rate is low and that it
performs much better than the DW1 version, especially for
low labeling rates: the Win/Tie/Lose scores for DW2 against
DW1 are 7/1/6, 5/2/7, 8/1/5, 13/1/0 and 14/0/0 respectively
for 90%, 70%, 50%, 30%, 10% labeling rate.

From the fifth to the eighth position, the ranking is less
clear since none of the methods is really better than the other.
However, all of these methods (NR and RNL as well as HF
and DW1) are significantly worse than BoP, RCT, RWWR and

DW2. Notice also that the performance of DW1 and HF drops
significantly when labeling rate decreases.

D. Computation time

The computational tractability of a method is an important
consideration to take into account. Table VIII provides a
comparison of the running time of all methods. To explore
computation time with respect to the number of nodes and the
number of classes, artificial graphs with a certain number of
classes have been created. For each method, 20 runs on each
of the data sets are performed and the running time is recorded
for each run. The 20 running times are averaged and results
are reported in Table VIII.

We observe that HF is one of the quickest methods, but
sadly it is not competitive in terms of accuracy, as reported
in Subsection (VI-C). Notice that the two kernel methods, RL
and RCT, have more or less the same computation time since
the alignment is done once for all the classes. RNL, the last
kernel method, is slower than RL, HF and RCT (because of the
time-consuming normalisation). After the HF and the kernel
methods, the BoP classifier achieves competitive results com-
pared with the remaining classifiers. The time augmentation
when the graph size increases is similar for all methods (except
for RL and RC for which the augmentation is smaller). The
cause is that all those methods require a matrix inversion:
the complexity of such an operation is O(n3) (where n is the
number of nodes) and this is what can be observed from Table
VIII (when the number of nodes doubles, the time is more or
less multiplied by eight). But the BoP classifier has the same
advantage as the kernel methods: its computation time does not
increase strongly when the number of classes increases. This
comes from the algorithm structure: to contrary to RWWR,
DW1 and DW2, the BoP classifier does not require a matrix
inversion for each class. Furthermore, the matrix inversions
(or linear systems of equations to solve) required for the BoP
can be computed as far as the graph (through its adjacency
matrix) is known, which is not the case with kernel methods.
This is a good property for BoP, since it means that rows 1
to 6 of Algorithm 1 can be pre-computed once for all folds
in the cross-validation. Finally, the space complexity is O(n2)
for all the methods.

E. Extreme cases

In this subsection, two extreme classification cases will be
studied. First, what happens if only one or two labeled data
points are available? As described in Section V, the BoP
classifier requires at least two nodes for computing the BoP
group betweenness. We performed a small experiment on the
first NewsGroups NG1 dataset. The parameters were tuned
by a 10-fold cross-validation and 20 runs were averaged. The
classification accuracies are reported in Table IX. Only the
RCT, RWWR and BoP classifiers remain competitive for this
first extreme case.

Secondly, let us consider the case where the classes are
imbalanced. The following experiment was designed to study
this other extreme case. The classes of the well-known
industry-yh dataset were merged to get two classes: the
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TABLE V
CLASSIFICATION ACCURACIES IN PERCENTS ± THE STANDARD DEVIATION, AVERAGED OVER 20 RUNS, OBTAINED ON PARTIALLY LABELED GRAPHS.

RESULTS ARE REPORTED FOR THE EIGHT METHODS (RL, RNL, LP, RCT, HF, RWWR, DW1, DW2, BOP) AND FOR FIVE LABELING RATES (10%, 30%,
50%, 70%, 90%). THE TABLE SHOWS THE RESULTS FOR ALL THE TESTED DATA SETS. THE STANDARD DEVIATION IS CALCULATED OVER THE 10 FOLDS

OF THE EXTERNAL CROSS-VALIDATION OF THE 20 INDEPENDENT RUNS.

l RL RNL RCT HF RWWR DW1 DW2 BoP

N
G

1

90% 97.56 ± 2.28 98.42 ± 2.03 97.16 ± 2.46 97.39 ± 2.55 97.17 ± 2.42 97.16 ± 2.71 97.56 ± 2.50 97.58 ± 2.08
70% 94.64 ± 10.11 97.31 ± 1.74 96.66 ± 1.26 97.25 ± 1.35 96.76 ± 1.32 96.65 ± 1.50 96.59 ± 1.51 97.36 ± 1.04
50% 92.87 ± 12.97 96.77 ± 1.27 96.53 ± 1.18 96.80 ± 1.04 96.70 ± 1.32 95.73 ± 1.30 96.41 ± 1.17 97.27 ± 0.98
30% 93.79 ± 10.52 96.31 ± 1.35 95.99 ± 1.30 95.92 ± 1.06 96.14 ± 1.10 94.34 ± 1.24 96.03 ± 0.94 96.94 ± 0.70
10% 87.27 ± 18.01 95.36 ± 2.17 96.15 ± 1.09 88.46 ± 7.32 96.19 ± 0.63 88.55 ± 1.94 95.27 ± 0.84 96.50 ± 1.27

N
G

2

90% 96.63 ± 2.78 96.44 ± 2.54 97.09 ± 2.67 95.61 ± 3.14 97.15 ± 2.53 95.71 ± 3.00 96.38 ± 2.54 96.46 ± 2.75
70% 94.02 ± 9.97 95.66 ± 1.86 96.00 ± 1.63 95.37 ± 1.65 96.18 ± 1.46 95.30 ± 1.74 96.23 ± 1.51 96.07 ± 1.81
50% 91.98 ± 11.63 94.99 ± 2.22 94.73 ± 1.43 94.85 ± 1.30 95.42 ± 1.37 94.13 ± 1.54 95.61 ± 1.50 95.43 ± 1.71
30% 91.19 ± 11.90 94.12 ± 3.46 93.73 ± 1.08 94.01 ± 1.09 94.60 ± 1.18 91.67 ± 1.60 94.51 ± 1.42 94.91 ± 1.43
10% 89.72 ± 13.38 93.55 ± 3.25 93.60 ± 0.80 86.80 ± 6.11 93.82 ± 0.63 82.97 ± 2.11 93.56 ± 1.29 94.02 ± 1.45

N
G

3

90% 96.80 ± 2.62 96.59 ± 2.16 98.05 ± 2.58 96.81 ± 2.76 98.05 ± 2.62 96.91 ± 2.83 96.94 ± 2.83 98.06 ± 2.34
70% 95.66 ± 6.75 96.63 ± 0.95 97.70 ± 1.52 96.59 ± 1.41 97.77 ± 1.59 96.89 ± 1.37 97.19 ± 1.18 97.77 ± 1.57
50% 93.00 ± 12.04 96.43 ± 0.94 97.13 ± 1.08 96.54 ± 0.92 97.21 ± 1.24 96.70 ± 0.98 96.43 ± 0.90 97.36 ± 1.26
30% 93.00 ± 10.84 95.98 ± 0.84 96.59 ± 0.81 95.80 ± 0.93 96.64 ± 0.81 95.78 ± 1.06 96.27 ± 0.91 96.84 ± 1.00
10% 87.73 ± 16.95 95.29 ± 0.97 95.45 ± 1.04 83.44 ± 9.70 95.21 ± 1.24 91.81 ± 1.47 95.46 ± 0.73 96.05 ± 0.81

N
G

4

90% 95.14 ± 2.18 95.99 ± 2.01 95.58 ± 2.07 95.03 ± 2.68 95.55 ± 2.05 94.99 ± 2.74 94.73 ± 2.17 95.19 ± 2.27
70% 89.17 ± 16.52 94.76 ± 0.96 94.41 ± 1.01 94.79 ± 1.44 94.29 ± 1.02 95.06 ± 1.45 94.23 ± 1.00 94.32 ± 0.92
50% 87.59 ± 17.33 93.60 ± 0.94 93.27 ± 0.88 94.38 ± 1.01 93.27 ± 0.78 94.35 ± 1.21 93.82 ± 0.58 93.85 ± 0.77
30% 87.22 ± 18.23 93.26 ± 0.88 92.97 ± 0.82 93.00 ± 1.02 93.16 ± 0.90 92.65 ± 1.13 93.38 ± 0.58 93.51 ± 0.75
10% 84.41 ± 22.69 91.05 ± 6.17 94.53 ± 1.38 74.92 ± 9.69 95.60 ± 0.52 85.99 ± 1.63 94.86 ± 0.52 95.14 ± 1.06

N
G

5

90% 95.35 ± 2.41 95.65 ± 2.84 95.94 ± 2.46 95.25 ± 2.54 95.97 ± 2.52 94.97 ± 2.57 95.84 ± 2.33 95.80 ± 2.98
70% 93.83 ± 7.58 94.40 ± 1.47 94.78 ± 1.13 94.83 ± 1.36 95.05 ± 1.07 94.67 ± 1.48 94.12 ± 1.55 94.74 ± 1.22
50% 91.26 ± 9.54 92.59 ± 1.87 93.65 ± 1.36 93.94 ± 1.02 94.48 ± 0.80 93.69 ± 1.17 93.64 ± 1.38 94.41 ± 1.00
30% 87.89 ± 14.24 90.41 ± 1.92 92.41 ± 1.18 91.51 ± 1.30 93.83 ± 0.69 91.65 ± 1.20 92.84 ± 0.96 94.21 ± 1.19
10% 88.76 ± 11.94 90.64 ± 2.22 93.58 ± 1.01 77.94 ± 6.73 94.84 ± 0.65 84.42 ± 1.89 92.35 ± 0.60 94.27 ± 1.07

N
G

6

90% 93.89 ± 2.91 92.49 ± 2.50 96.25 ± 2.84 94.19 ± 2.81 96.27 ± 2.84 93.99 ± 2.93 95.21 ± 2.63 96.17 ± 2.77
70% 92.43 ± 1.47 91.05 ± 1.21 95.93 ± 1.59 93.07 ± 1.55 96.07 ± 1.57 93.86 ± 1.76 94.00 ± 1.37 95.96 ± 1.75
50% 91.44 ± 1.00 90.19 ± 1.76 94.80 ± 1.10 91.42 ± 1.34 95.41 ± 0.71 92.90 ± 1.39 93.43 ± 1.27 95.36 ± 0.77
30% 89.58 ± 4.11 88.42 ± 1.69 93.33 ± 1.21 88.04 ± 1.83 94.52 ± 0.85 90.75 ± 1.49 92.49 ± 0.82 94.51 ± 1.19
10% 89.19 ± 10.35 89.20 ± 3.13 94.18 ± 0.65 73.74 ± 5.37 94.93 ± 0.56 83.66 ± 1.84 92.82 ± 0.88 94.21 ± 1.44

N
G

7

90% 92.48 ± 2.31 91.18 ± 2.90 91.98 ± 2.52 92.22 ± 2.46 91.99 ± 2.51 92.46 ± 2.52 92.61 ± 2.25 93.06 ± 2.02
70% 91.73 ± 1.51 91.04 ± 1.46 91.57 ± 1.19 91.34 ± 1.58 91.56 ± 1.14 91.87 ± 1.44 91.97 ± 1.25 92.04 ± 1.15
50% 89.97 ± 8.93 90.40 ± 1.10 91.42 ± 0.79 90.03 ± 1.08 91.61 ± 0.51 90.69 ± 1.10 91.88 ± 0.80 91.61 ± 0.87
30% 90.65 ± 1.33 89.86 ± 0.71 90.65 ± 1.16 87.05 ± 1.32 91.06 ± 0.68 88.45 ± 1.09 91.09 ± 1.12 90.97 ± 0.75
10% 85.52 ± 16.28 88.66 ± 0.76 88.89 ± 1.10 68.85 ± 6.90 91.08 ± 0.57 80.31 ± 1.67 90.33 ± 0.57 90.23 ± 1.05

N
G

8

90% 90.34 ± 2.70 90.16 ± 2.12 90.81 ± 2.42 88.73 ± 2.79 90.80 ± 2.43 88.73 ± 2.87 90.54 ± 2.19 90.48 ± 2.81
70% 89.30 ± 7.26 89.45 ± 1.07 90.44 ± 1.08 88.01 ± 1.60 90.46 ± 1.04 87.91 ± 1.60 90.68 ± 1.46 90.19 ± 1.64
50% 89.06 ± 5.17 88.14 ± 1.16 89.74 ± 0.74 86.67 ± 1.37 89.94 ± 0.59 86.66 ± 1.34 89.87 ± 0.68 90.07 ± 0.96
30% 87.34 ± 5.24 84.47 ± 2.06 88.05 ± 0.89 83.48 ± 1.32 89.35 ± 0.41 83.72 ± 1.23 88.52 ± 0.66 89.54 ± 0.68
10% 81.75 ± 13.35 81.38 ± 3.24 85.82 ± 1.87 62.52 ± 6.48 88.56 ± 0.51 73.57 ± 1.59 87.28 ± 0.61 88.26 ± 1.71

N
G

9

90% 88.60 ± 2.88 89.20 ± 2.97 89.09 ± 2.86 88.75 ± 2.71 89.11 ± 2.92 87.96 ± 2.64 88.50 ± 2.58 88.62 ± 3.14
70% 87.24 ± 1.61 88.27 ± 1.70 88.03 ± 1.71 87.62 ± 1.67 88.09 ± 1.67 87.42 ± 1.62 87.74 ± 1.75 88.09 ± 1.48
50% 85.68 ± 3.03 86.11 ± 1.41 87.21 ± 1.65 85.94 ± 1.44 87.37 ± 1.60 86.06 ± 1.38 87.22 ± 1.11 87.56 ± 1.47
30% 83.50 ± 6.71 82.11 ± 2.54 85.71 ± 1.54 82.32 ± 1.46 87.07 ± 0.88 83.03 ± 1.30 86.25 ± 0.81 86.97 ± 0.97
10% 80.60 ± 9.47 80.16 ± 2.09 84.55 ± 1.10 68.64 ± 4.43 86.17 ± 0.66 72.78 ± 1.81 85.56 ± 0.69 86.28 ± 1.14

C
or

ne
ll

90% 58.91 ± 6.25 52.86 ± 4.17 65.22 ± 5.56 62.67 ± 7.04 56.50 ± 8.58 60.64 ± 6.65 60.38 ± 5.78 59.78 ± 7.22
70% 59.00 ± 3.22 51.69 ± 4.21 63.66 ± 3.47 60.26 ± 3.87 57.82 ± 3.90 57.97 ± 4.60 59.25 ± 2.03 61.34 ± 4.80
50% 55.40 ± 5.04 46.74 ± 4.41 61.70 ± 2.98 56.88 ± 3.37 56.05 ± 2.73 54.53 ± 5.04 57.09 ± 3.25 61.25 ± 4.41
30% 49.33 ± 5.91 42.95 ± 3.30 60.55 ± 3.78 50.35 ± 3.25 54.84 ± 4.37 51.18 ± 5.44 56.27 ± 4.12 61.19 ± 6.19
10% 44.97 ± 3.99 41.91 ± 1.90 58.07 ± 5.31 42.71 ± 1.49 57.51 ± 3.78 47.11 ± 7.05 58.58 ± 4.65 58.17 ± 8.77

Te
xa

s

90% 72.11 ± 4.83 69.11 ± 4.73 78.29 ± 4.96 74.04 ± 6.46 78.99 ± 4.78 81.34 ± 6.48 81.72 ± 4.67 82.29 ± 4.27
70% 71.16 ± 2.09 68.01 ± 1.90 78.21 ± 2.46 71.96 ± 3.94 78.52 ± 1.83 80.30 ± 3.62 79.56 ± 3.24 80.74 ± 3.07
50% 68.98 ± 2.18 65.04 ± 3.26 77.29 ± 2.69 69.16 ± 3.07 76.73 ± 1.70 78.95 ± 2.86 77.86 ± 1.83 79.60 ± 2.81
30% 66.70 ± 2.84 61.27 ± 4.18 76.11 ± 2.73 65.56 ± 2.89 73.79 ± 2.16 76.50 ± 2.32 76.63 ± 1.02 78.16 ± 1.86
10% 58.99 ± 8.20 54.60 ± 5.22 74.12 ± 3.88 51.16 ± 2.46 71.24 ± 1.78 69.42 ± 4.04 75.04 ± 1.53 76.12 ± 3.36

W
as

hi
ng

to
n 90% 68.18 ± 2.98 63.56 ± 4.59 70.27 ± 3.71 66.51 ± 5.74 61.87 ± 5.84 61.11 ± 6.81 58.22 ± 5.31 64.49 ± 5.44

70% 62.28 ± 6.81 63.65 ± 1.41 69.29 ± 2.46 65.37 ± 3.26 59.78 ± 2.80 59.74 ± 3.73 55.45 ± 4.78 64.05 ± 3.66
50% 61.91 ± 5.08 64.38 ± 1.15 67.75 ± 1.97 63.78 ± 2.36 59.01 ± 2.21 57.01 ± 3.97 55.56 ± 4.18 60.99 ± 3.70
30% 60.57 ± 4.26 64.81 ± 1.62 65.80 ± 3.01 59.88 ± 2.28 57.85 ± 2.80 53.29 ± 5.88 55.79 ± 3.30 60.88 ± 4.37
10% 53.52 ± 12.15 57.73 ± 10.50 68.04 ± 1.40 42.18 ± 4.37 52.11 ± 5.61 46.30 ± 8.02 57.30 ± 3.30 61.57 ± 5.84

W
is

co
ns

in 90% 71.39 ± 4.90 67.92 ± 3.40 74.18 ± 4.71 74.95 ± 5.03 73.42 ± 4.10 80.43 ± 4.82 77.47 ± 4.95 73.46 ± 3.62
70% 70.41 ± 1.89 67.27 ± 2.54 75.21 ± 1.77 73.64 ± 2.95 71.75 ± 2.93 79.10 ± 3.00 75.49 ± 2.89 74.18 ± 3.16
50% 69.23 ± 1.86 67.10 ± 1.44 75.43 ± 1.37 71.91 ± 2.22 69.18 ± 2.94 77.22 ± 2.28 75.64 ± 2.11 75.05 ± 2.31
30% 68.10 ± 1.56 66.25 ± 2.60 75.53 ± 1.77 68.60 ± 1.97 69.14 ± 4.54 73.84 ± 2.54 75.21 ± 1.76 75.32 ± 2.13
10% 64.90 ± 7.20 62.91 ± 5.66 74.71 ± 3.69 54.12 ± 3.95 63.36 ± 10.32 65.34 ± 4.23 73.72 ± 1.48 73.65 ± 3.68

IM
D

b

90% 81.10 ± 2.99 80.91 ± 3.25 82.14 ± 2.99 76.53 ± 12.06 81.96 ± 3.15 50.64 ± 1.27 81.36 ± 3.06 80.74 ± 2.20
70% 77.51 ± 9.70 70.75 ± 13.93 81.41 ± 1.74 58.00 ± 12.35 81.34 ± 1.68 50.64 ± 1.22 80.73 ± 1.69 80.20 ± 1.94
50% 69.25 ± 14.41 57.41 ± 12.30 80.82 ± 1.26 51.33 ± 2.14 80.68 ± 1.28 51.68 ± 3.52 80.40 ± 1.03 79.87 ± 1.42
30% 62.65 ± 14.24 51.60 ± 5.68 80.32 ± 0.80 51.01 ± 0.17 80.17 ± 0.65 60.64 ± 12.39 77.65 ± 7.19 79.47 ± 1.11
10% 54.61 ± 9.86 50.30 ± 0.40 79.60 ± 0.61 50.97 ± 0.10 79.67 ± 0.68 73.20 ± 8.60 76.33 ± 8.08 78.79 ± 1.40
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TABLE VI
ONE-SIDE t-TEST FOR ALL LABELING RATES. THE WIN/TIE/LOSE FREQUENCY SUMMARIZES HOW MANY TIMES THE BOP CLASSIFIER WAS

SIGNIFICANTLY BETTER (WIN), EQUIVALENT (TIE) OR SIGNIFICANTLY WORSE (LOSE) THAN EACH OTHER METHOD.

RL RNL LP RCT HF RWWR DW1 DW2
l = 90% 6/5/3 9/1/4 8/2/4 3/2/9 9/2/3 5/3/6 12/1/1 6/6/2
l = 70% 14/0/0 11/1/2 10/1/3 3/5/6 11/1/2 6/3/5 10/2/2 9/1/4
l = 50% 13/0/1 13/0/1 11/0/3 10/1/3 12/0/2 9/4/1 12/0/2 9/1/4
l = 30% 13/1/0 13/0/1 13/0/1 10/2/2 14/0/0 10/1/3 14/0/0 12/1/1
l = 10% 14/0/0 14/0/0 14/0/0 9/2/3 14/0/0 7/1/6 14/0/0 11/3/0

TABLE VII
FOR EACH LABELING RATE, THE DIFFERENT CLASSIFIERS ARE RANKED THROUGH A BORDA RATING (SEE THE TEXT FOR DETAILS). THE CLASSIFIERS

ARE THEN RANKED ACCORDING TO THE TOTAL RATING OBTAINED ACROSS ALL DATA SETS (THE LARGER THE BETTER). l STANDS FOR LABELING RATE
AND THE NUMBERS BETWEEN PARENTHESES ARE THE TOTAL RATINGS.

Ranking First Second Third Fourth Fifth Sixth Seventh Last
l = 90% RCT (86) BoP (77) RWWR (76) DW2 (66) RL (55) HF (52) RNL (49) DW1 (43)
l = 70% BoP (87) RCT (81) RWWR (76) DW2 (68) HF (57) DW1 (55) RNL (48) RL (32)
l = 50% BoP (94) RWWR (78) RCT (75) DW2 (72) HF (56) DW1 (54) RNL (44) RL (31)
l = 30% BoP (103) RWWR (85) DW2 (80) RCT (78) RNL (45) DW1 (42) RL (36) HF (35)
l = 10% BoP (100) RWWR (89) RCT (85) DW2 (83) RNL (48) RL (42) DW1 (39) HF (18)

TABLE VIII
OVERVIEW OF CPU TIME IN SECONDS NEEDED TO CLASSIFY ALL THE UNLABELED NODES. RESULTS ARE AVERAGED ON 20 RUNS. THE CPU USED WAS

AN INTEL(R)CORE(TM)I3 AT 2.13 GHZ WITH 3072 KO OF CACHE SIZE AND 6 GB OF RAM AND THE PROGRAMMING LANGUAGE IS MATLAB.

RL RNL RCT HF RWWR DW1 DW2 BoP
Exp1: 1000 nodes, 2 classes 0.0872 0.4937 0.0751 0.1680 0.3480 0.6826 0.6772 0.4997
Exp2: 2000 nodes, 2 classes 0.4616 3.4961 0.4225 0.9618 2.0441 4.5561 4.5858 3.0574
Exp3: 4000 nodes, 2 classes 2.8274 27.0695 2.5949 7.1481 14.1116 35.7161 36.0207 22.393
Ratio Exp2/Exp1 5.2935 7.0814 5.6258 5.7250 5.8739 6.6746 6.7717 6.1185
Ratio Exp3/Exp2 6.1252 7.7428 6.1418 7.4320 6.9036 7.8392 7.8548 7.3242
Exp2: 2000 nodes, 2 classes 0.4616 3.4961 0.4225 0.9618 2.0441 4.5561 4.5858 3.0574
Exp4: 2000 nodes, 4 classes 0.5011 3.4563 0.4036 1.2064 3.4249 8.5048 8.4003 3.2535
Exp5: 2000 nodes, 8 classes 0.4813 3.8449 0.4482 1.5748 6.0697 16.0031 16.3956 3.5868
Ratio Exp4/Exp2 1.0856 0.9886 0.9553 1.2543 1.6755 1.8667 1.8318 1.0641
Ratio Exp5/Exp4 0.9605 1.1124 1.1105 1.3054 1.7722 1.8817 1.9518 1.1024

majority class with 1768 nodes and the minority class
with only 30 nodes (this represents 1.67% for the minority
class). Once again, the parameters were tuned by a 10-fold
cross-validation and 20 runs were averaged. The classification
accuracies for the two classes are reported in Table IX. The
best methods to identify the minority class are RL and NRL,
followed by RWWR and RCT. In this particular case, the
BoP classifier does not perform very well.

VII. CONCLUSION

This paper investigates an application of the bag-of-paths
framework viewing the graph as a virtual bag from which paths
are drawn according to a Boltzmann sampling distribution.

In particular, it introduces a novel algorithm for graph-
based semi-supervised classification through the bag-of-paths
group betweenness, or BoP for short (described in Section
V). The algorithm sums the a posteriori probabilities of
drawing a path visiting a given node of interest according to
a biased sampling distribution, and this sum defines our BoP
betweenness measure. The Boltzmann sampling distribution
depends on a parameter, θ, gradually biasing the distribution
towards shorter paths: when θ is large, only little exploration

is performed and only the shortest paths are considered, while
when θ is small (close to 0+), longer paths are considered
and are sampled according to the product of the transition
probabilities pref

ij along the path (a natural random walk).
Experiments on real-world data sets show that the BoP

method outperforms the other considered approaches when
only a few labeled nodes are available. When more nodes are
labeled, the BoP method is still competitive. Its computation
time is also substantially lower in most of the cases.

Our future work will include several extensions of the pro-
posed approach. Another interesting issue is how to combine
the information provided by the graph and the features of
the nodes in a clever, preferably optimal, way. The interest
of including node features should be assessed experimentally.
A typical case study could be the labeling of protein-protein
interaction networks. The node features could involve gene
expression measurements for the corresponding proteins.

Yet another application of the bag-of-paths framework could
be the definition of a robustness measure or criticality measure
of the nodes. The idea would be to compute the change in
reachability between nodes when deleting one node within the
BoP framework. Nodes having a large impact on reachability
would be then considered as highly critical.
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TABLE IX
CLASSIFICATION ACCURACIES IN PERCENTS, AVERAGED OVER 20 RUNS, OBTAINED ON PARTIALLY LABELED ARTIFICIAL GRAPHS. RESULTS ARE

REPORTED FOR THE EIGHT METHODS (RL, RNL, RCT, HF, RWWR, DW1, DW2, BOP) AND FOR A 50% LABELING RATE. RARE IS THE CASE WHERE
ONLY TWO LABELED NODES PER CLASS ARE KNOWN AND IMBALANCED IS THE CASE WHERE ONE OF THE CLASSES IS MUCH MORE REPRESENTED THAN

THE OTHER.

RL NRL RCT HF RWWR DW1 DW2 BoP
Rare 51.9 ± 1.4 52.6 ± 2.6 84.0 ± 2.5 50.0 ± 0.05 84.0 ± 2.5 51.9 ± 0.5 67.3 ± 2.8 83.0 ± 3.1

Imbalanced: Major 98.2 ± 0.04 98.2 ± 0.04 98.1 ± 0.08 99.9 ± 0.04 95.5 ± 0.03 88.7 ± 7.0 93.8 ± 2.5 96.8 ± 0.4
Imbalanced: Minor 42.4 ± 4.2 43.8 ± 3.3 32.2 ± 2.0 1.9 ± 2.4 11.6 ± 10.5 38.5 ± 0.0 17.2 ± 2.7 11.9 ± 2.5

Finally, the biggest drawback of the BoP classifier is that it
is not applicable as-is for large graphs. It would be interesting
to investigate if it is possible to modify the classifier to be
computationally more tracktable on large graphs. A starting
clue would be to use the same trick as in [8].
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